where it is assumed

V= {oav, &= (v, (15)
Vﬂ @

Comparing (1) and (14), the deduction can be made that using the Vernotte —Lykov relationship (4) in
place of the Fourier hypothesis (3) would result in the appearance of an additional member in the Biot varia-
tional equation. Let us note that this additional member agrees in form (see the expression in the square
brackets in the generalized equation (14)) with the corresponding component of the Lagrange equation in ana~
Iytical mechanics, which takes account of the influence of the kinetic energy of the mechanical system [8]. For
tr = 0 and K = D Eq. (14) goes over into the Biot equation (1).

NOTATION

T, temperature; t, time; t,, relaxation time; x, y, z, spatial coordinates; p, ¢, A, coefficients of volume
density, specific heat, and heat conductivity of the material; qj, generalized coordinates; the dot above the
variables q; and H denotes differentiation with respect to time; Vy = const, 8; = const are the body volume
and surface area bounding this volume, respectively.
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EFFECT OF SLITS ON THE RESISTANCE OF A
CONDUCTING FILM

T. D. Shermergor, I. A, Biryulin, UDC 621,316.8
and G. A. Babushkin

Formulas are derived for the resistance offered to a steady or quasisteady current by a conduct-
ing film with straight and I1-shaped slits,

One way of changing the resistance of a conducting film used as a resistor is to cut slits in it. A slit is
a thin curve along which a conducting layer has been removed, i.e., in slits the conductivity ¢ = 0.

The resistance of a film with a slit can be calculated by using the familiar analogy between the hydrody-—
namics problem of flow past a certain body and the electrostatics problem [1], and also the analogy between
the electrostatics problem and the problem of the distribution of a steady or quasisteady current [2].

1. We calculate the change in resistance of a film with a straight slit perpendicular to the lines of flow
at infinity (Fig, 1). We denote the width of the film by 27 and the length of the slit by 2b. We assume that 7 »
b and that the slit is located in the middle of the film so that the perturbing effect of its ends does not extend
to the edges of the film. The solution of the corresponding hydrodynamics problem of the flow of a fluid past a
plate in an infinite medium is given in [1]. For the problem under consideration, we write the conformal map~
ping function in the form

W(z)z"”igyw;’ 22—b2, . (1)

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 3, pp. 541-545, March, 1979, Original
article submitted January 24, 1978,
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Fig. 1. Film with a straight slit perpendicular to the lines of flow.

Fig. 2. a) II-shaped slit at edge of film; b) conformal mapping of
II-shaped slit onto upper half plane.

where z = x + iy and Ey., is the electric field intensity at infinity. The current flows along the film, and
Exw = 0. In accord with [3], we write

|4 (2) =U (x, Y+ iV x, 9, (2)

where U(x, y) is the potential function and V (x, y) is the stream function. Then the resistance R of the film
bounded by the equipotential lines U; and U, and lines of force V; and V; is
R—t U, — Uyl ,_ (3)
Ve —Vil
where ¢ is the resistance of a unit square of the film. After finding functions U(x, y) and V(x,y) from (1)
and (2) and using the fact that the dimension of the film along the y axis is very much larger than 21, we ob-
tain from (3)
91 -+ lysl
R =TT e/ — 4)
IV E—p (
where y = y; for y> 0 and y = ¥ for y< 0. For [ > b a simple expression can be found from (4) for the
change in resistance of the film AR

AR=R—R,~R, >, (5)
202

where Ry is the resistance of the film without a slit,

By using the method described it is easy to treat the problem of a slit at the edge of a film, i.e., a film
cut into two halves (Fig. 1) along the y axis. The conformal mapping function for this case is known [1]. Ap-
propriate calculations yield the same result as that given by Eq. (5), i.e., the relative change in resistance is
the same as before. Physically this is understandable since the film in Fig, 1 can be regarded as two films
with slits along their edges connected in parallel along the y axis.

2. The result obtained is understandable since the change in resistance of the film is approximately
proportional to b%. In addition, it is desirable to have a smoother change in resistance. To accomplish this,
we consider the II-shaped slit shown in Fig. 2a, where I is the width of the film, 2L is its length, b is the
height of the slit, and 24 is its length. It is convenient to perform the calculation in the dimensionless vari-
ables h =1/a, = L/a, and & = b/a. Assuming

Eye, €D (6)

we map the pentagon AjA;A3A A; in the complex W plane (Fig. 2a) conformally onto the upper half of the com~
plex z plane (Fig, 2b).

The transformation W = W(z) which produces the required confirmal mapping can be determined by
using the principle of symmetry and the Schwarz —Christoffel integral [1]. For the problem under considera-
tion this integral has the form

z

. e w2
W) =C, s‘l/ 912—222 dz + C,,

b

(N
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or

W (2) = C:kG (9, k) + C,, (8)
where sin ¢ =z, u = k!, and k is the modulus of the elliptic integrals; G(o, k) denotes

G, H=F(p, & —D (o, k),

_F(e, ) —E(q, ) _K—E
D(q}, k) _ k2 H D - k2 - (9)
From the correspondence between the points a; and A, and from (8) we obtain
C, = ie. (10

Using the pairs of points a,, A; and ag, A5, and (10) we obtain
C, = (kG)™, (11)

W 2

h/ 21 42— eGh, (12)
:

where G=K ~D.
Substituting (10), (11), and (12) into (7), we find
W) = G—%)— tie. (13)
To calculate the resistance it is necessary to determine certain values of z = z(W). From considerations of

symmetry a] = —a; = m. The value of m can be found after taking the value of W(z) at z = m. After inte-
gration, we obtain

LG = kG + "2:1 F(u, k) —xE (@, k) +m ”;:—2—_112 (14)
where
. . mt—w?
W == arcsin l/’—n—z——_—T .
Hence, restricting ourselves to terms on the order of m™2,
kG 2L (15)

28kG
Further, let us find H, the image of the distance between the points corresponding to z = 0 and Im z = i ¥ in
the z plane. Taking account of (10) and (11) we have from (8)

iH

S _ _/ 1— 22 .
i(h—e) kG = l’/ dz, ~ (16)

> 22

0
from which, after integration along a segment of the imaginary axis
(h-—¢e) kG~ kF (WH, R’y —nE(/H, ¥)-+ H, 17
where k' =V 1 -k is the complementary modulus of the elliptic integral. Using the relation [4]

E@H, ¥)~=F(w/H, &)+ 0(H™), (18)
we find
H =~ (h— €) kG. (19)
Remembering that the resistance R of the film with a slit is
el —ar (20)
R - C H > .

and without a slit is given by Eq. (4) for b = 0, we find
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h

We find % from (12), and using the fact that ¢ « 1, we obtain

x2z1+is+i(2mi+5)aa 22)
b4 n2 4n

PP N S S 2—(21n—f—»—~ 3) &,
) b n? 4n
which is accurate to terms onthe order of €2, In addition G can be found from the expansion [4]
3—2A 0 + 51 — 36A vy
4 2 .
where A = "1/2 In(k'¥/16), Using (22) and (23) we convert to dimensional variables in (21) and find the change

in resistance of the film AR

(23)

G114

b b2 2 qb
R=R—Ro~Ro( + 4 4= o) (24)
In practice the resistance of a film is changed by making a I'-shaped cut. It is known from experiment

that AR varies parabolically with b and linearly with a.

The calculation of the resistance of a film with a T'-shaped slit is difficult to perform analytically, and
so far has not been accomplished, It is clear from the hydrodynamic analogy that the patterns of flow past I'~
shaped and T-shapedslits for ¢ » b are nearly the same. Therefore Eq. {24) can be used to calculate the '~
shaped slit with an accuracy which increases with decreasing &. This is illustrated in Fig. 3 which shows
AR/Ry as a function of the size of a IT-shaped slit.. The pattern obtained is in good agreement with the analo-

gous experimental curve for a I'~shaped slit.

In conclusion, we note that the conformal mapping function found above can be used to solve the problem
of a thermal field in an analogous system by replacing the slit by a thermally insulating cut. Such problems
can be solved rather simply by conformal mapping {5, 6], but are more difficult with singular integral equa~
tions [7]. In [6] there is also considered a rectangular notch in an infinite strip of a uniform sheet, but the
heat flux ig directed across the strip and the Schwarz formula for a half plane [1] is used in the calculation.

NOTATION

o, conductivity; z = x + iy, complex variable; i, imaginary unit; W{z)}, function of complex variable;
Ey , electricfield intensity along y axis at infinity; U, y), potential function. V(x, y), stream function; R, resistance
of film with slit; ¢, resistance of unit square of film; Ry, resistance of film without slit; AR, change in re-
sistance; h = 1/a, & = L/a, ¢ = b/a, dimensionless variables; Aj, vertices of pentagon in complex W plane;
aj, images of vertices of pentagon; C;, C;, constants in Schwarz —Christoffel integral; F(¢, k), E(¢, k), el~
liptic integrals of first and second kind; k, modulus of elliptic integrals; sing = z; » = kK 1; K, complete el-
liptic integral of first kind; E, complete elliptic integral of second kind; k', complementary modulus of ellip-
tic integral; O(H™ %), infinitesimal of third order. 369
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