
where it is assumed 

v = .I  avo, K = .f  Vo. (15) 
Vo Vo 

Comparing (1) and (14), the deduction can be made that using the Vernot te -Lykov relationship (4) in 
place of the Fourier  hypothesis (3) would resul t  in the appearance of an additional member in the Blot var ia-  
tional equation. Let us note that this additional member agrees in form (see the expression in the square 
brackets in the generalized equation (14)) with the corresponding component of the Lagrange equation in ana- 
lytical mechanics, which takes account of the influence of the kinetic energy of the mechanical system [8]. For 
t r  = 0 and K = D Eq. (14) goes over into the Blot equation (1). 

N O T A T I O N  

T, temperature;  t, th-ne; t r ,  relaxation time; x, y, z, spatial coordinates; p, c, X, coefficients of volume 
density, specific heat, and heat conductivity of the material ;  qi, generalized coordinates; the dot above the 
variables qi and H denotes differentiation with respect  to time; Vo = const, So = const a re  the body volume 
and surface area  bounding this volume, respectively. 
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E F F E C T  OF S L I T S  ON T H E  R E S I S T A N C E  OF A 

C O N D U C T I N G  F I L M  

T .  D. S h e r m e r g o r ,  I. A. B i r y u l i n ,  
a n d  G. A. B a b u s h k i n  

Formulas are  derived for the resis tance offered to a steady or quasisteady current  by a conduct- 
ing film with straight and H-shaped slits. 

UDC 621.316.8 

One way of changing the resis tance of a conducting film used as a res i s to r  is to cut slits in it. A slit is 
a thin curve along which a conducting layer has been removed, i.e.,  in slits the conductivity ~r = 0. 

The resis tance of a film with a slit can be calculated by using the familiar analogy betweenthe hydrody- 
namics problem of flow past a certain body and the electrostat ics problem [1], and also the analogy between ~ 
the electrostatics problem and the problem of the distribution of a steady or quasisteady current  [2]. 

1. We calculate the change in resistance of a film with a straight slit perpendicular to the lines of flow 
at infinity (Fig. 1). We denote the width of the film by 21 and the length of the slit by 2b. We assume that l >> 
b and that the slit is located in the middle of the film so that the perturbing effect of its ends does not extend 
to the edges of the film. The solution of the corresponding hydrodynamics problem of the flow of a fluid past a 
plate in an infinite medium is given in [1]. For the problem under consideration, we write the conformal map- 
ping function in the form 

u7 ( z )  = - -  iE~ ~ :  (1) 

Translated from Inzhenerno-Fizieheskii Zhurnal, Vol. 36, No. 3, pp. 541-545, March, 1979. Original 
art icle st~bmitted January 24, 1978. 

366 0022-0841/79/3603- 0366507.50 �9 Plenum Publishing Corporation 



+1 t 

Fig. 1 

~7 ~7 

~- /ze ~s n, ~-7 
b 

a,- az a a go a+ as a, + 
/ / / / / / ) / / / . f l / / / / / / / / ) / / / / / / / / J / / / / ) / / / / / / ]  

- r - ' ~  " - I 0 l "~ +or 

Fig. 2 

Fig. 1. F i lm with a s t ra igh t  s l i t  perpendicular  to the l ines of flow. 

Fig. 2. a) H-shaped sl i t  at  edge of f i lm; b)  conformal  mapping of 
H-shaped  sl i t  onto upper half  plane. 

where  z = x + iy and Ey~o is the e l ec t r i c  field intensi ty at  infinity. The c u r r e n t  flows along the f i lm,  and 
Ex~  = 0. In accord  with [3], we wri te  

w (z) = v (x, y) + i v  (x, y), (2) 

where  U(x, y)  is the potent ial  function and V (x, y) is the s t r e a m  function. Then the r e s i s t a n c e  R of the f i lm 
bounded by the equipotential  l ines Us and U2 and lines of force  V1 and V2 is 

R = ~ IU2--  u,r . (3) 
Iv~ - -  vd ' 

where  ~ is the r e s i s t a n c e  of a unit square  of the f i lm. After  finding functions a ( x ,  y)  and V(x ,  y)  f rom (1) 
and (2) and using the fact  that  the d imens ion  of the f i lm along the y axis  is v e r y  much l a r g e r  than 2 l ,  we ob-  
ta in  f rom (3) 

R = ~ ly~I + ly21 (4) 
2 V ~  ' 

where  y = y~ for y > 0 and y = Y2 for y < 0. For  l >> b a s imple  exp re s s ion  can be found f rom (4) for the 
change in r e s i s t a n c e  of the f i lm AR 

hR = R --Ro ~ R0 - - , b Z  (5) 
2l e 

where  R0 is the r e s i s t a n c e  of the f i lm without a slit .  

By using the method descr ibed  it is easy  to t r e a t  the p rob lem of a s l i t  at the edge of a f i lm,  i.e., a f i lm 
cut into two ha lves  (Fig. 1) along the y axis .  The conformal  mapping function for this  case  is known [1]. Ap-  
p rop r i a t e  calculat ions yield the same  r e s u l t  as that  given by Eq. (5), i .e . ,  the re la t ive  change in r e s i s t ance  is 
the s ame  as  be fore .  Physica l ly  this  is unders tandable  s ince the fi lm in Fig. 1 can be r ega rded  as two f i lms 
with sl i ts  along the i r  edges  connected in para l l e l  along the y axis .  

2. The r e su l t  obtained is understandable  since the change in r e s i s t a n c e  of the f i lm is approximate ly  
propor t iona l  to b 2. In addition, it is de s i r ab l e  to have a smoother  change in r e s i s t ance .  To accompl ish  th is ,  
we cons ider  the H-shaped  sl i t  shown in Fig. 2a, where  l is the width of the f i lm,  2L is i ts  length, b is the 
height  of the s l i t ,  and 2 a is its length. It  is convenient  to p e r f o r m  the calculat ion in the d imens ion less  v a r i -  
ab les  h = l / a ,  ~ = L / a ,  and e = b / a .  Assuming  

h>>~, ~ ) I ,  (6) 

we map  the pentagon A1A~A~A4A 5 in the complex  W plane (Fig. 2a) conformal ly  onto the upper half  of the c o m -  
plex z plane {Fig. 2b). 

The t r a n s f o r m a t i o n  W = W (z) which produces  the requi red  conf i rmal  mapping can be  de termined by  
using the pr inc ip le  of s y m m e t r y  and the S c h w a r z - C h r i s t o f f e l  in tegral  [1]. For  the prob lem under c o n s i d e r a -  
t ion this in tegra l  has  the fo rm 

w (z) = c, ( 1//- 1 Z2 (7) 
�9 ~ .  ~ t~ - -  z - - - - - - T  d z  + C2, 
0 
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o r  

Iv (z) = c, k6 (~, k) + c~, 

w h e r e  s i n  ~p = z ,  x = k - I ,  and  k i s  the  m o d u l u s  o f  t he  e l l i p t i c  i n t e g r a l s ;  G ( ~ ,  k)  d e n o t e s  

G (V, k) ~_ F ( %  k) - -  D (% k), 

O(% k ) = F ( %  k ) - - E ( %  k) D K - - E  
k z k 2 

F r o m  the  c o r r e s p o n d e n c e  b e t w e e n  the  po in t s  a 0 and A0, and  f r o m  (8) we ob t a in  

C z : ie. 

Using  the  p a i r s  of  po in t s  a4, A 4 and a~, A 5, and (10) we ob t a in  

w h e r e  G - K - D. 

C, = (k6)-', 

�9 • z--'---~ dz = eGk, 
1 

(s) 

(9) 

(1o) 

(11) 

(12) 

Substituting (10), (ii), and (12) into (7), we find 

Iv (z) = 6 (,~, k____)_) + ie. (13) 
G 

To c a l c u l a t e  t he  r e s i s t a n c e  i t  i s  n e c e s s a r y  to  d e t e r m i n e  c e r t a i n  v a l u e s  of  z = z (W).  F r o m  c o n s i d e r a t i o n s  of  
s y m m e t r y  a~ = - a i  - m .  The  v a l u e  o f  m can  b e  found a f t e r  t ak ing  the  v a l u e  of  W ( z )  a t  z = m .  A f t e r  i n t e -  
g r a t i o n ,  we ob t a in  

~ kG = kG + - -  •  I F(~, k)- -•  k ) + - m V - ~ - ~ -  ~ , (14) 

w h e r e  

la ~- arcsin Y m-~ ~ 1 " 

H e n c e ,  r e s t r i c t i n g  o u r s e l v e s  to t e r m s  on the  o r d e r  o f  m -z ,  

•  1 (15) 
m ,~ .~kG I -  2 ~ k G  " 

F u r t h e r ,  l e t  us  f ind H, the  i m a g e  of  t he  d i s t a n c e  b e t w e e n  the  po in t s  c o r r e s p o n d i n g  to  z = 0 and I m  z = i ~  in  
t he  z p l ane .  Tak ing  accoun t  of (10) and (11) we  have  f r o m  (8) 

i H  

i(h--e) kG= l f I !//F I-F" dz, (16) 
, ~ 2  ~ Z 2 

0 

f r o m  which ,  a f t e r  i n t e g r a t i o n  a long  a s e g m e n t  of  t he  i m a g i n a r y  a x i s  

(h - -  e) kG ~ kF (• k') - -  • (z/H, k') + H, (17) 

w h e r e  k w = ~ i s  the  c o m p l e m e n t a r y  m o d u l u s  of  the  e l l i p t i c  i n t e g r a l  Using  t h e  r e l a t i o n  [4] 

E (WH, k') ~ F (WH, k') + 0 (H-3), (18) 

we find 

H z (h -- e) kG. (19) 

R e m e m b e r i n g  tha t  t he  r e s i s t a n c e  R of  t h e  f i lm  wi th  a s l i t  i s  

a ?  ~ a-;- (20) 
R=~ /4 , 

and wi thout  a s l i t  i s  g iven  by  Eq. (4) fo r  b = 0, we  f ind 
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Fig. 3. Relat ive change of fi lm 
re s i s t ance  as a function of s ize 
of H-shaped slit .  The sharp  
bend in the curve  occurs  a t  the 
beginning of the horizontal  slit. 

Ro 1 - -  f -  2 (,~kG) 2 (21) 
h 

We find ~ f rom (12), and using the fact  that e << 1, we obtain 

x ~ l + 4 e +  2 ( s ) n ~ -  2 1 n ~ - + 5  a z, (22) 

k 2 = l - - k ' Z ~ t  4 2 ( ~ ) - - - - e - - - -  2 1 n - - ~ 3  s~, ~ 

which is accura te  to t e rms  onthe  o rde r  of e 2. In addition G can be found f rom the expansion [4] 

G ~ l +  3~2___~Ak,~_ 5 t - -36A k,~, (23) 
4 2 

where  A = -1/2 ln(k'2/16 ). Using (22) and (23) we conver t  to  dimensional  var iab les  in (21) and find the change 
in r e s i s t ance  of the fi lm AR 

AR = R - -  Ro ~ Ro + ~ -  ~ . (24) 
L21 

In p r ac t i ce  the r e s i s t a n e e  of a f i lm is changed by making a r - s h a p e d  cut. It  is known f rom exper imen t  
that  AR var i e s  parabol ical ly  with b and l inear ly  with a. 

The calculat ion of the r e s i s t ance  of a film with a F-shaped s l i t  is difficult  to p e r fo rm  analytically,  and 
so far  has  not been  accomplished.  It  is c l ea r  f rom the hydrodynamic analogy that the pat terns  of flow past  F -  
shaped and I ] -shapedsl i t s  fo r  a >> b a re  near ly  the same.  T h e r e f o r e  Eq. (24) c a n b e  used to calculate the r -  
shaped s l i t  with an accuracy  which inc reases  with decreas ing  e. This is i l lustrated in Fig. 3 which shows 
AR/R0 as a function of the size of a l~-shaped s l ] t .  The pat tern  obtained is in good agreement  with the analo-  
gous exper imenta l  curve  for a r - s h a p e d  slit.  

In conclusion, we note that the conformal  mapping function found above can be  used to solve the problem 
of a t he rma l  field in an analogous sys tem by replac ing  the sli t  by a the rma l ly  insulating cut. Such problems  
can be  solved r a the r  s imply by  conformal  mapping [5, 6], but a re  m o r e  difficult  with singular integral  equa-  
t ions [7]. In [6] t he re  is also considered a r ec t sz~u la r  notch in an infinite s t r ip  of a uniform sheet ,  but the 
heat  flux is d i rec ted  ac ros s  the s t r ip  and the Schwarz formula  for  a half  plane [1] is used in the calculation. 

N O T A T I O N  

~, conductivity; z = x + iy, complex var iable ;  i, imaginary unit; W( z ), function of complex var iable ;  
E y ~ ,  e lec t r i c  field intensity along y axis at infinity; U(x, y), potential function. V(x, y), s t r eam function; R, r es i s t ance  
of fi lm with sli t ;  $, r e s i s t ance  of unit square  of f i lm; R0, r e s i s t ance  of film without sli t ;  AR, change in r e -  
s is tance;  h = l / a ,  ,~  = L / a ,  e = b / a ,  dimensionless  var iab les ;  Ai, ve r t i ce s  of pentagon in complex W plane; 
a i ,  images of ve r t i ce s  of pentagon; Ci, C2, constants  in Schwarz -Chr i s t o f f e l  integral;  F ( ~ ,  k ) ,  E ( ~ ,  k) ,  e l -  
l iptic in tegrals  of f i r s t  and second kind; k, modulus of ell iptic integrals;  s i n ~  = z; ~ = k- l ;  K, complete e l -  
liptic integral  of f i r s t  kind; E, complete el l iptic integral  of second kind; k ' ,  complementary  modulus of el l ip-  
t ic  integral ;  O (H- s), infini tesimal of third order .  369 
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